Structure of 4-(1-Cyclohexenyl)-3-phenylsydnone*

By J. Hašek, J. Obrda, \dagger K. Huml, S. Nešpůrek and M. Šorm
Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 16206 Praha 6, Czechoslovakia

(Received 8 March 1979; accepted 18 June 1979)

Abstract

C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\), monoclinic, $P 2_{1} / c, a=$ 11.015 (2), $b=10.042$ (2), $c=15.164$ (3) $\AA, \beta=$ $132.0(1)^{\circ}, V=1246 \cdot 7(4) \AA^{3}, Z=4, D_{x}=1 \cdot 29, D_{m}=$ $1 \cdot 30$ (3) $\mathrm{Mg} \mathrm{m}^{-3}, M_{r}=242 \cdot 28, \mu($ Mo $K \alpha)=0 \cdot 1$ mm^{-1}, m.p. $397-399 \mathrm{~K}$. The structure was solved by direct methods. The final R value was 0.046 for 1473 observed reflexions. The compound was studied for its photochromic properties. The angle between the planes of the phenyl and sydnone rings is 63.0° and the angle between the plane of the $s p^{2}$ orbitals of the double bond $\mathrm{C}(13)=\mathrm{C}(14)$ and the sydnone ring is $28 \cdot 0^{\circ}$.

Introduction. The title compound is a member of the alkenyl sydnones, which are studied for their photochromic properties (Hašek, Obrda, Huml, Nešpůrek, Chojnacki \& Šorm, 1978; Hašek, Obrda, Huml, Nešpůrek \& Sorm, 1979). It exhibits photochromism in the crystalline state with a short half-time of decoloration and weak photochromism in solid solutions at low temperatures (Nešpůrek \& Šorm, 1977).

Bright-yellow crystals stable in air in the dark were prepared by freezing from ethanol solution. The crystal used was ground to an approximately spherical shape with a diameter varying between 0.65 and 0.75 mm . The unit-cell dimensions were obtained by refining 15 reflexions measured with a Syntex $P 2_{1}$ four-circle diffractometer. The intensities were collected by the $\theta-2 \theta$ scan with a variable scan speed of $1.5-29.5^{\circ} \mathrm{min}^{-1}$ and graphite-monochromated Mo $K \alpha$ radiation. 1639 reflexions were measured up to $\sin \theta / \lambda=0.55 \AA^{-1}$; 1473 of these were taken as observed. A reflexion was taken as observed if $I>1 \cdot 96 \sigma_{I}$, where σ_{I} was calculated from counting statistics. The data analysis showed that the measurements were not significantly influenced by extinction or absorption. \ddagger

[^0]The structure was solved by direct methods with the MULTAN program (Main, Woolfson, Lessinger, Germain \& Declercq, 1974). The correct solution was indicated by the highest value of the combined figure of merit. The atomic parameters were refined by a leastsquares method in the block-diagonal approximation by the modified program NRC-10 (Ahmed, Hall, Pippy \& Huber, 1966). The function minimized was $\sum w \Delta^{2}$, where $\Delta=\left\|F_{o}|-| F_{c}\right\|, w^{-1}=\sigma_{F}^{2}+\left(0.01 F_{o}\right)^{2}\left(\sigma_{F}\right.$ determined from the counting statistics). The atomic scattering factors were taken from International Tables for X-ray Crystallography (1974); for H the scattering factor was taken as a spherical approximation of the H atom in the hydrogen molecule (Stewart, Davidson \& Simpson, 1965).

The anisotropic refinement of non- H atoms and the isotropic refinement of the H atoms proceeded until the parameter shifts of all atoms dropped below $\frac{1}{5}$ of their e.s.d.'s. In the last refinement cycle $n=219$ atomic parameters were refined and all $m=1473$ observed reflexions were used. This led to $R_{1}=\sum \Delta / \sum\left|F_{o}\right|=$ $0.046, R_{2}=\left(\sum \Delta^{2} / \sum\left|F_{o}\right|^{2}\right)^{1 / 2}=0.045, R w_{2}=$ $\left(\sum w \Delta^{2} / \sum w\left|F_{o}\right|^{2}\right)^{1 / 2}=0.063, \quad S=\left[\sum w \Delta^{2}\right]$ $(m-n)]^{1 / 2}=4 \cdot 1$.

Table 1. Final coordinates $\left(\times 10^{4}\right)$ of the non-hydrogen atoms and their e.s.d.'s, and $B_{\mathrm{eq}}\left(\AA^{2}\right)$

$\mathrm{O}(1)$	$702(2)$	$7789(2)$	$-320(1)$	$6 \cdot 5$
$\mathrm{~N}(2)$	$2145(2)$	$8269(2)$	$35(2)$	$6 \cdot 1$
$\mathrm{~N}(3)$	$2747(2)$	$8997(2)$	$980(1)$	$4 \cdot 5$
$\mathrm{C}(4)$	$1854(2)$	$9027(2)$	$1294(2)$	$4 \cdot 2$
$\mathrm{C}(5)$	$472(3)$	$8224(2)$	$437(2)$	$5 \cdot 3$
$\mathrm{O}(6)$	$-723(2)$	$7878(2)$	$260(1)$	$7 \cdot 1$
$\mathrm{C}(7)$	$4317(2)$	$9600(2)$	$1560(2)$	$4 \cdot 3$
$\mathrm{C}(8)$	$5661(3)$	$9195(2)$	$2694(2)$	$5 \cdot 3$
$\mathrm{C}(9)$	$7171(3)$	$9749(3)$	$3229(2)$	$6 \cdot 0$
$\mathrm{C}(10)$	$7301(3)$	$668(2)$	$2619(2)$	$6 \cdot 0$
$\mathrm{C}(11)$	$5941(3)$	$1043(2)$	$1487(2)$	$6 \cdot 1$
$\mathrm{C}(12)$	$4432(3)$	$512(2)$	$937(2)$	$5 \cdot 3$
$\mathrm{C}(13)$	$2188(2)$	$9778(2)$	$2264(2)$	$4 \cdot 5$
$\mathrm{C}(14)$	$1555(4)$	$9319(3)$	$2731(3)$	$7 \cdot 0$
$\mathrm{C}(15)$	$1730(5)$	$51(3)$	$3671(3)$	$9 \cdot 7$
$\mathrm{C}(16)$	$2912(4)$	$1166(3)$	$4232(2)$	$7 \cdot 2$
$\mathrm{C}(17)$	$2885(3)$	$1900(2)$	$3380(2)$	$6 \cdot 7$
$\mathrm{C}(18)$	$3120(3)$	$1035(2)$	$2691(2)$	$5 \cdot 4$

(C) 1979 International Union of Crystallography

Table 2. Fractional coordinates of the hydrogen atoms $\left(\times 10^{3}\right)$ and $B_{\text {iso }}\left(\AA^{2}\right)$

The atoms marked by an asterisk are calculated to their ideal positions; refined positions have been deposited.

	x	y	z	$B_{\text {iso }}$
H(81)	545 (2)	852 (2)	310 (2)	$6 \cdot 2$ (5)
H(91)	825 (3)	935 (2)	406 (2)	7.5 (6)
H(101)	839 (3)	97 (2)	302 (2)	7.6 (6)
H(111)	604 (2)	157 (2)	107 (2)	$5 \cdot 8$ (5)
H(121)	335 (3)	80 (3)	12 (2)	8.3 (6)
H(141)	79 (3)	858 (3)	234 (2)	8.8 (7)
$\mathrm{H}(151)^{*}$	202 (-)	944 (-)	427 (-)	15.5 (12)
H(152)*	68 (-)	$37(-)$	335 (-)	13.6 (10)
H(161)*	399 (-)	83 (-)	486 (-)	14.8 (11)
H(162)	261 (3)	177 (2)	467 (2)	7.5 (6)
H(171)	354 (3)	270 (3)	371 (2)	8.2 (6)
$\mathrm{H}(172)^{*}$	187 (-)	238 (-)	284 (-)	15.5 (11)
H(181)	434 (3)	89 (3)	327 (2)	8.4 (6)
H(182)	293 (2)	154 (2)	204 (2)	5.5 (4)

Fig. 1. Numbering scheme of 4-(1-cyclohexenyl)-3-phenylsydnone showing bond lengths (\AA) and some valence angles (${ }^{\circ}$). E.s.d.'s of bond lengths are $0.003-0.006 \AA$ for non- H atoms and $0.02-$ $0.05 \AA$ for bonds involving H atoms. E.s.d.'s of $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are $0.2-0.3^{\circ}$, of $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles $1.4-2.6^{\circ}$ and of $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles $2 \cdot 1-4 \cdot 8^{\circ}$.

The six highest maxima $\left(0.2-0.3\right.$ e \AA^{-3}) on the final difference map were located around $\mathrm{C}(14), \mathrm{C}(15)$, $\mathrm{C}(16), \mathrm{C}(17)$. Four H atoms, $\mathrm{H}(151), \mathrm{H}(152), \mathrm{H}(161)$, $H(172)$, were refined to improbable positions with high $B_{\text {iso }}$ values. Neither their recalculation to theoretical positions, nor their positioning at maxima on the difference map improved their refined parameters. Therefore, the calculated positions for these H atoms are used in this paper and the refined coordinates have been deposited.* The final fractional coordinates, $B_{\text {eq }}$ (Hamilton, 1959) and $B_{\text {iso }}$ for the H atoms are listed in Tables 1 and 2.

Discussion. The bond lengths and angles are given in Fig. 1.

By comparing this structure with that of 3-phenyl-4-(3-methyl-1-buten-2-yl)sydnone (Hašek et al., 1978), statistically significant differences were found in the angles about $\mathrm{N}(3)$ and $\mathrm{C}(4)$ (see Table 3). Characteristics of the important mean planes are shown in Table 4. According to χ^{2} of the phenyl ring, it seems that the e.s.d.'s are somewhat underestimated. Nevertheless, the sydnone ring shows significant deviations from planarity. The angle of 63.0° between planes of the phenyl and sydnone rings excludes their conjugation. However, the angle of 28.0° between the plane of the $s p^{2}$ orbitals of the double bond $\mathrm{C}(13)=\mathrm{C}(14)$ and the sydnone ring does not reject the possibility of a slight overlapping of π orbitals. In connexion with this angle, short intramolecular contacts are observed between $\mathrm{C}(14) \cdots \mathrm{O}(6)[3 \cdot 138$ (3) \AA] and $\mathrm{H}(141) \cdots \mathrm{O}(6)$ [2.49 (2) \AA]; $\angle \mathrm{O}(6) \cdots \mathrm{H}(141)-\mathrm{C}(14)$ is $124(2)^{\circ}$ and $\angle \mathrm{C}(5)-\mathrm{O}(6) \cdots \mathrm{H}(141)$ is $86 \cdot 0(9)^{\circ}$.

A figure showing the molecule viewed along the $C(4)-C(13)$ bond has been deposited.* Six torsion angles formed by bonds in the cyclohexenyl ring, starting with $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16), \quad \mathrm{C}(14)-$ $C(15)-C(16)-C(17)$, etc., are $11 \cdot 7,-37 \cdot 5,54 \cdot 0$, $-43 \cdot 0,16 \cdot 4$, and $-1 \cdot 1^{\circ}$.

The thermal motion of molecule was studied by the TLS method of Schomaker \& Trueblood (1968). Part of the molecule consisting of the sydnone ring and

> * See deposition footnote.

Table 3. Comparison of the valence angles $\left(^{\circ}\right.$) around $\mathrm{N}(3)$ and $\mathrm{C}(4)$ in the title compound (I) and 3-phenyl-4-(3-methyl-1-buten-2-yl)sydnone (II)

	(I)	(II)
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$116 \cdot 0(2)$	$115 \cdot 6(1)$
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(7)$	$114 \cdot 7(2)$	$116 \cdot 5(1)$
$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(7)$	$129 \cdot 3(2)$	$127 \cdot 9(1)$
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$104 \cdot 7(2)$	$105 \cdot 2(1)$
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(13)$	$127 \cdot 8(2)$	$126 \cdot 2(1)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(13)$	$127 \cdot 4(2)$	$128 \cdot 6(2)$

Table 4. Deviations $\left(\AA \times 10^{3}\right)$ from weighted mean planes

Asterisks denote atoms defining the planes.
Plane $a /$ phenyl ring: $\quad \chi^{2}=10$
Plane $b /$ sydnone ring: $\chi^{2}=21$
Plane $c /$ double bond: $\chi^{2}=204$

	Plane a	Plane b	Plane c
	$962(2)$	$3(2)^{*}$	$412(2)$
$\mathrm{O}(1)$	$1147(2)$	$-6(2)^{*}$	$-242(2)$
$\mathrm{N}(2)$	$44(2)$	$4(2)^{*}$	$-433(2)$
$\mathrm{N}(3)$	$-840(2)$	$-2(2)^{*}$	$12(2)^{*}$
$\mathrm{C}(4)$	$-252(3)$	$-2(2)^{*}$	$586(3)$
$\mathrm{C}(5)$	$-558(2)$	$-13(2)$	$1125(2)$
$\mathrm{O}(6)$	$-5(2)^{*}$	$-42(2)$	$-1150(2)$
$\mathrm{C}(7)$	$5(3)^{*}$	$-1154(2)$	$-2401(3)$
$\mathrm{C}(8)$	$-2(3)^{*}$	$-1207(3)$	$-3098(3)$
$\mathrm{C}(9)$	$-1(3)^{*}$	$-169(3)$	$-2542(3)$
$\mathrm{C}(10)$	$-1(3)^{*}$	$920(3)$	$-1297(3)$
$\mathrm{C}(11)$	$4(3)^{*}$	$999(2)$	$-585(3)$
$\mathrm{C}(12)$	$-2150(3)$	$52(2)$	$-21(2)^{*}$
$\mathrm{C}(13)$	$-2662(4)$	$-466(3)$	$-17(4)^{*}$
$\mathrm{C}(14)$	$-4027(5)$	$-387(4)$	$38(5)^{*}$
$\mathrm{C}(15)$	$-4678(4)$	$48(3)$	$-186(4)$
$\mathrm{C}(16)$	$-4398(3)$	$1085(3)$	$422(3)$
$\mathrm{C}(17)$	-430		
$\mathrm{C}(18)$	$-2930(3)$	$709(2)$	$5(3)^{*}$

Angles between planes: $a \wedge b 63 \cdot 0, b \wedge c$ 28.0, $a \wedge c 65 \cdot 1^{\circ}$.
$\mathrm{O}(6), \mathrm{C}(7)$ and $\mathrm{C}(13)$ can be approximated by a rigidbody model $\left\{\right.$ r.m.s. $=\left[\sum_{i k}\left(U_{i k}^{\exp }-U_{i k}^{\text {calc }}\right)^{2} / n\right]^{1 / 2}=$ 0.0018 ; e.s.d. $=\left[\sum_{i k}\left(U_{i k}^{\text {exp }}-U_{i k}^{\text {calc }}\right)^{2} /(n-s)\right]^{1 / 2}=$ 0.0008 ; (r.m.s.) $)^{\prime}=\left[\sum_{i k} \sigma^{2}\left(U_{i k}^{\text {exp }}\right) / n\right]^{1 / 2}=0.0024$, where $n=48$ is the number of vibration tensor components and $s=20$ is the number of derived quantities $\}$. Bondlength corrections (Cruickshank, 1956) lie within two e.s.d.'s.

Fig. 2 shows a projection of the crystal structure along \mathbf{b}. Some short intermolecular distances are $\mathrm{O}(6)-\mathrm{H}\left(162^{\mathrm{i}}\right) \quad 2.43(3), \quad \mathrm{O}(6)-\mathrm{H}\left(91^{\mathrm{ii}}\right) \quad 2.61$ (2) $\mathrm{O}(6)-\mathrm{H}\left(182^{\text {iii }}\right) 2.66(2), \mathrm{C}(5)-\mathrm{H}\left(101^{\text {iv }}\right) 2.87$ (2), and $\mathrm{C}(5)-\mathrm{C}\left(10^{\mathrm{iv}}\right) 3.409$ (3) \AA, where the superscripts denote atoms in the following crystallographically equivalent positions: (i) $-x, 2-y, 0.5-z$; (ii) $x-1$, $1.5-y, 0.5-z$; (iii) $-x, 2-y,-z$; (iv) $1-x, y-0.5$, $0.5-z$. The distance $\mathrm{O}(6) \cdots \mathrm{H}\left(162^{\mathrm{i}}\right)$ is shorter than the sum of the van der Waals radii (Nyburg, 1961). According to Kvick, Koetzle \& Thomas (1974), and as in the structure of 3-phenyl-4-(3-methyl-1-buten-2-yl)sydnone, this may be classified as a very weak hydro-

Fig. 2. The crystal structure viewed down b. The molecule in the lower left-hand corner drawn in thick lines corresponds to the coordinates in Tables 1 and 2.
gen bond: $\angle \mathrm{C}\left(16^{\mathrm{i}}\right)-\mathrm{H}\left(162^{\mathrm{i}}\right) \cdots \mathrm{O}(6) \quad 153(2)^{\circ}$, $C\left(16^{i}\right) \cdots O(6) 3.443(5) \AA$.

The authors thank Dr K. Ulbert for valuable discussions, Mrs J. Vaňková for technical assistance and Dr V. Petríček for consulation on the rigid-body problem.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1966). NRC Crystallographic Programs for the IBM/360 System. World List of Crystallographic Computer Programs, 2nd ed., Appendix, p. 52. Utrecht: Oosthoek:
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 757-758.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hašek, J., Obrda, J., Huml, K., Nešpůrek, S., Chojnacki, H. \& Sorm, M. (1978). Acta Cryst. B34, 2756-2759.
Hašek, J., Obrda, J., Huml, K., Nešpůrek, S. \& Šorm, M. (1979). Acta Cryst. B35, 437-440.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-73. Birmingham: Kynoch Press.
Kvick, A., Koetzle, T. F. \& Thomas, R. (1974). J. Chem. Phys. 61, 2711-2719.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1974). MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Nešrůrek, S. \& Šorm, M. (1977). Collect. Czech. Chem. Coтmии. 42, 811-818.
Nyburg, S. C. (1961). X-ray Analysis of Organic Structures, pp. 303-307. New York: Academic Press.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

[^0]: * Study of Photochromic Sydnones. III.
 \dagger On leave from: Geological Institute, Czechoslovak Academy of Sciences, 16500 Praha 6, Czechoslovakia.
 \ddagger Full experimental details, lists of structure factors, thermal parameters, and refined fractional coordinates of four H atoms and some projections of the structure including the thermal ellipsoids have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34542 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

